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Abstract. A ‘ballistic-search’ algorithm is presented which allows the identification of clusters
(or funnels) of ground states in Ising spin glasses even for moderate system sizes. The clusters
are defined to be sets of states, which are connected in state-space by chains of zero-energy flips
of spins. The technique can also be used to estimate the sizes of such clusters. The performance
of the method is tested with respect to different system sizes and choices of parameters. As an
application the ground-state funnel structure of two-dimensional±J spin glasses of systems up to
sizeL = 20 is analysed by calculating a huge number of ground states per realization. AT = 0
entropy per spin ofs0 = 0.078(5)kB is obtained.

1. Introduction

The calculation of the energetic minima of spin glass systems (for reviews on spin glassess
see [1]) remains the paradigm for difficult optimization problems in physics. Usually, only
one of the states exhibiting the lowest energy is calculated, even if a system is characterized
by many minima having all the same lowest energy. In [2] an algorithm is presented, which
allows one to analyse large numbers of ground states and enables one to identify all ground-
state funnels of Ising spin glass systems efficiently. Moreover, it is possible to analyse all
funnels without having all ground states available. In this paper the algorithm is presented in
detail. Since the algorithm has a random nature, one has to show that the method is in fact
reliable. This will be the main part of this paper.

The algorithm is applicable to Edwards–Anderson (EA)±J spin glasses. They consist
of N spinsσi = ±1, described by the Hamiltonian

H ≡ −
∑
〈i,j〉

Jijσiσj . (1)

The sum〈i, j〉 runs over all pairs of neighbours. The spins are placed on ad-dimensional lattice
of linear sizeL with periodic boundary conditions in all directions. Systems with quenched
disorder of the interactions (bonds) are considered. Their possible values areJij = ±1 with
equal probability. To reduce the fluctuations, a constraint is imposed, so that

∑
〈i,j〉 Jij = 0.

Since the Hamiltonian exhibits no external field, reversing all spins of aconfiguration(also
calledstate) z = {σi} results in a state with the same energy, called theinverseof z. In the
following, a spin configuration and its inverse are regarded as one single state.

The study of ground-state landscapes helps us to understand the nature of random
systems [3]. But the calculation of the minima ofH turns out to be a hard computational
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problem: it is only for the special case of two-dimensional systems with periodic boundary
conditions in no more than one direction and without external field that a polynomial-time
algorithm is known for obtaining exact ground states [4]. For more than two dimensions or
in the presence of a magnetic field the problem belongs to the class of the NP-hard tasks [5],
i.e. only algorithms with exponentially increasing running time are available. The simplest
method works by enumerating all 2N possible states and has obviously an exponential running
time. Even a system size of 43 is too large. The basic idea of the so-calledbranch-and-bound
algorithm [6] is to exclude those parts of state space where no low-lying states can be found,
so that the complete low-energy landscape of systems of size 43 can be calculated [7].

A more sophisticated method calledbranch-and-cut[8,9] works by rewriting the quadratic
energy function: then a minimum of a linear function is to be found, but an additional set of
inequalities must hold for all feasible solutions. Since not all inequalities are knowna priori,
the method iteratively solves the linear problem, looks for inequalities which are violated,
and adds them to the set until the solution is found. Since the number of inequalities grows
exponentially with the system size, the same holds for the computation time of the algorithm.
Anyway, with branch-and-cut small systems up to 83 are feasible.

The method utilized here is able to calculate true ground states [10] up to sizes 143.
For two-dimensional systems, sizes up to 502 can be treated. Additionally, in contrast to
the methods mentioned earlier, the algorithm used here is able to calculate many statistically
independent ground states for each realization of the randomness. The method is based on a
special genetic algorithm [11,12] and on the cluster-exact approximation (CEA) method [13].
This technique is explained briefly in the next section.

But it is not only the computer time needed for the calculation of one ground state which
may increase exponentially with the system size. For the±J spin glass the number of ground
statesD, called theground-state degeneracy, grows exponentially withN as well. This is
due to the fact that there are alwaysfree spins, i.e. spins which can be turned over without
changing the energy of the system. A state withf independent free spins allows for 2f different
configurations all having the same energy. The quantity suitable to describe this behaviour is
the ground-state entropy

S0 ≡ kB〈lnD〉 (2)

where〈· · ·〉 denotes the average over different realizations of the bonds. Since the number of
free spins is extensive, the entropy per spins0 ≡ S0/N is non-zero for the±J spin glass.

As the ground-state degeneracy increases exponentially, it seems to be impossible to obtain
all ground states for systems unless they are not very small. To overcome this problem in this
work all clusters(also calledfunnels) of ground states are calculated. A cluster is defined in
the following way: two ground-state configurations are calledneighboursif they differ only by
the orientation of one free spin. All ground states which are accessible through this neighbour
relation are defined to be in the same cluster.

The method presented here, calledballistic search(BS), is able to obtain all ground-
state funnels without knowing all ground states. Additionally one can estimate the size of
the funnels. Consequently, it is possible to calculate directly the ground-state entropy per
spin even for systems exhibiting a hugeT = 0 degeneracy. Furthermore, the number of
funnels and their size distribution as a function of system size are of interest on their own:
for the infinite-ranged Sherrington–Kirkpatrik (SK) Ising spin glass a complex configuration-
space structure was found using the replica-symmetry-breaking mean-field (MF) scheme by
Parisi [14]. If the MF approximation is valid for finite-dimensional spin glasses as well, then
the number of ground-state funnels must diverge with increasing system size. On the other
hand, the droplet-scaling picture predicts that, basically, one ground-state funnel dominates
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the spin-glass behaviour [15–19]. To address this issue a cluster analysis was performed for
small three-dimensional systems of one sizeL = 4 [7]. In [20] two-dimensional spin glasses
of sizes up to 5× 5 were investigated. As a first application of BS, an analysis of the size
dependence of the number of clusters ford = 3 (up to 8× 8× 8) is presented in [2], revealing
an exponential increase as a function of the number of spins.

The paper is organized as follows. First the procedures used in this work are presented in
detail. Then the behaviour of the algorithms is tested with respect to different system sizes and
parameters. It is shown that BS works reliably. In section 4 a variant of BS is presented, which
allows us to estimate the size of clusters, if only a small number of ground states are available
per funnel. Next, as an application, the algorithm is utilized to investigate the ground-state
cluster structure of two-dimensional±J spin glasses. In particular, the dependence of the
number of clusters and the number of ground states onN are evaluated. The last section
summarizes the results.

2. Algorithms

In this section all necessary algorithms for studying the ground-state clusters are presented.
For the calculation of the ground states the CEA method is used, which is explained briefly.
If all ground states of a system are available a straightforward method to identify all clusters
can be used. But if the system size gets larger, the degeneracy grows extremely; thus it is
impossible to obtain all ground states of a realization. In the main part the BS method is
presented, which allows us to determine the cluster structure, even if only a tiny subset of all
ground states is available. Additionally, the BS algorithm is much faster for the case where all
ground states have been calculated.

The basic method used here for the calculation of spin-glass ground states is the CEA
algorithm [13], which is a discrete optimization method designed especially for spin glasses.
In combination with a genetic algorithm [11, 12] this method is able to calculate true ground
states [10] in three-dimensions for systems of sizes up toL = 14 on standard workstations. A
detailed description of the method can be found in [10]. Here the basic ideas of genetic CEA
are summarized.

The concept offrustration [21] is important for its understanding. A system is called
frustrated, if it is not possible to find a configuration, where all bonds contribute with negative
values to the energy. One says it is not possible tosatisfyall bonds. The CEA method constructs
iteratively and randomly a nonfrustrated subset of spins within the system. Spins adjacent to
many unsatisfied bonds are more likely to be added to the subset. During this construction
a local gauge transformation of the spin variables is applied so that all interactions between
subset spins become ferromagnetic [13]. The spins not belonging to the subset act like local
magnetic fields on the subset spins. Therefore, the ground state of the subset is not trivial.
Since the subset gives raise only to ferromagnetic interactions, an energetic minimum state
for its spins can be calculated in polynomial time by using graph theoretical methods [22–24]:
an equivalent network is constructed [25], the maximum flow is calculated [26, 27] and the
spins of the subset are adjusted to their orientations leading to a minimum in energy regarding
the subset. Therefore, the energy is decreased for the total system or remains the same. By
iterating this process a few times the total energy of a system is decreased quite efficiently, but
obtaining ground states turned out to be very hard.

To increase the efficiency of CEA it is combined with a genetic algorithm [12]. Genetic
algorithms are biologically motivated. An optimal solution is found by treating many instances
of an optimization problem in parallel, keeping only better instances and replacing bad ones
by new ones (survival of the fittest). With an appropriate choice of few simulation parameters,
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usually more than 90% of all genetic CEA runs end up with a true ground state. Configurations
with a higher energy are not included in further calculations.

Using this method one does not encounter ergodicity problems or critical slowing down as
in algorithms which are based on Monte Carlo methods. Moreover, it is possible to calculate
many statistically independent configurations (replicas). Genetic CEA was already utilized
to examine the ground-state landscape of two-dimensional [28] and three-dimensional [29]
±J spin glasses by calculating a small number of ground states per realization. Furthermore
the existence of a spin-glass phase for nonzero temperature was confirmed for the three-
dimensional spin glass [10]. Finally, the method was applied to the±J random-bond model
to investigate itsT = 0 transition from ferromagnetism to spin-glass behaviour [30], which
takes place by increasing the fraction of antiferromagnetic bonds starting from a ferromagnet.

Once many ground states are calculated the straightforward method to obtain the structure
of the clusters works as follows: the construction starts with one arbitrarily chosen ground
state. All other states, which differ from this state by one free spin, are said to be its neighbours.
They are added to the cluster. These neighbours are treated recursively in the same way: all
their neighbours which are yet not included in the cluster are added. After the construction of
one cluster is complete, the construction of the next one starts with a ground state, which has
not been visited so far.

The running-time of the construction of the clusters is only a linear function of the
degeneracyD (O(D)), similar to the Hoshen–Kopelman technique [31], because each ground
state is visited only once. Unfortunately, the detection of all neighbours, which has to be
performed at the beginning, is of O(D2), because all pairs of states have to be compared.
Since forL = 5 systems it is possible that they exhibit more than 105 ground states, this
algorithm is not suitable for larger sizes thanL = 5.

So far we have seen how ground states can be calculated with the genetic CEA method
and how the cluster structure can be established with a simple but slow algorithm if all ground
states are available. Now, the BS method is presented. The main idea is to analyse the cluster
structure with having only a small subset of all ground states available, thus much larger
systems can be treated.

The basic tool is atest, which tells whether two ground states are in the same cluster or
not. Assume that it is known that some ground states belong to the same cluster. Now we know
that another statez belongs to the cluster as well, if the test tells us thatz is in the same cluster
asany of the states already treated. The main feature of the test is that it can be performed
for states which are not direct neighbours in phase space. This is the reason why only a small
subset of all ground states is needed.

The test works as follows. Given two independent replicas{σαi } and{σβi } let1 be the set
of spins, which are different in both states:1 ≡ {i|σαi 6= σβi }. Now BS tries to build a path
in configuration space of successive flips of free spins, which leads from{σαi } to {σβi }. The
path consists of states which differ only by flips of free spins from1 (see figure 1). For the
simplest version iteratively a free spin is selected randomly from1, flipped and removed from
1. Therefore, a straight path in built in phase space. This is the reason why the search for a
path is calledballistic. This test does not guarantee finding a path between two ground states
which belong to the same cluster. It may depend on the order of selection of the spins whether
a path is found or not, because not all free spins are independent of each other. Thus, a path is
found with a certain probabilitypf , which depends on the size of1. Later on, the behaviour
of pf is analysed. It will be shown that it can be easily ensured thatpf is large enough such
that all clusters are identified correctly.

The algorithm for the identification of clusters using BS works as follows: the basic idea
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Figure 1. Ballistic search: a path in configuration-space of free spins is constructed
between two ground states (dark nodes) belonging to the same cluster. Depending on
the order the spins are flipped the path may be found or not. Nodes represent ground
states, edges represent flips of free spins. Please note that this figure is only schematic,
the configuration space hasN dimensions.

is to let a ground state represent that part of a funnel which can be reached using BS with a
high probability by starting at this ground state. If a cluster is large it has to be represented by
a collection of states, so that the whole cluster is ‘covered’. For example, a typical cluster of
aL = 8 spin glass consisting of 1017 ground states is usually represented by only some few
ground states (e.g. two or three). A detailed analysis of how many representing ground states
are needed as a function of cluster and system size can be found in the next section. At each
time the algorithm stores a set ofm clustersA = {A(r)|r = 1, . . . , m} each consisting of a set
A(r) = {zrl} of representing configurationszrl = {σ rli } (l = 1, . . . , |A(r)|). At the beginning
the cluster set is empty. Iteratively all available ground stateszj = {σ ji } (j = 1, . . . , D)
are treated: The BS algorithm tries to find paths fromzj or its inverse to all representing
configurations inA. Let F be the set of cluster numbers, where a path is found. Now three
cases are possible (see figure 2):

• No path is found:F = ∅.
A new cluster is created, which is represented by the actual configuration treated:
A(m + 1) ≡ {zj }. The cluster is added toA: A ≡ A ∪ {A(m + 1)}.
• One or more paths are found to exactly one cluster:F = {f1}. Thus, the ground state
zj belongs to one cluster. Consequently, nothing special happens, the setA remains
unchanged.
• zj is found to be in more than one cluster:F = {f1, . . . , fk}. Since a path is found from
zj to several states, they all belong in fact to the same cluster. Thus, all these clusters
are merged into one single cluster, which is now represented by the unionÃ of the states,
which have represented before all clusters affected by the merge:

Ã ≡
k⋃
j=1

A(fj ) A ≡ {Ã} ∪ A \
k⋃
j=1

{A(fj )}.

This procedure is conducted for all available states. Please note that the merging
mechanism ensures automatically that larger clusters are represented by more states than
smaller clusters. Later we will see that the number of states necessary to ‘cover’ a cluster
grows only slowly with the cluster size. Thus, systems exhibiting a large degeneracy can be
treated.

The whole loop is performed two times. The reason is that a state which links two parts
of a large cluster (case 3) may appear in the sequence of ground states before states appear
belonging to the second part of the cluster. Consequently, this linking state is treated as being
part of just one single smaller cluster and both subclusters are not recognized as one larger
cluster (see figure 4). During the second iteration the ‘linking’ state is compared with all
other representing states found in the first iteration, i.e. the large cluster is identified correctly.
With one iteration, the problem appears only if few ground states per cluster are available.
Nevertheless, two iterations are always performed, so the difficulty does not occur.
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a) no valley

c) several valleys

before iteration j:

BS-test: to how many valleys does the state belong ?

z j

b) one valley

Figure 2. Algorithm for the identification of all clusters: several ground states (circles) ‘cover’
parts of clusters (filled areas). During the processing of all states a set of clusters is kept. When
statezj is treated, it is tested using BS to how many of the already existing clusters the state belongs.
Three cases can occur: (a) the ground state is found to belong to no cluster, (b) it is found in exactly
one cluster and (c) it is found in several clusters. In the first case a new cluster is found, in the
second one nothing changes and in the third case several smaller clusters are identified as subsets
of the same larger cluster.

Now a small example of how the algorithm works is given. Assume that we have six
ground statesz1, . . . , z6. Initially we have an empty set of clusters. The development of the
set of clusters is shown in figure 3. The statez1 surely belongs to a cluster, thus in a first step
a cluster withz1 as representative is created. Now assume that the BS test fails forz2 andz1.
Thus, a second cluster is created. Forz3 a path is found in phase space toz2, but not toz1.
Therefore, the cluster structure does not change in this step. Ground statez3 is represented by
an open circle in the figure. This means that it is not stored in the cluster data structure. In the
next step, a path is found fromz4 to z1 and toz2. Consequently, all states encountered so far
belong to the same cluster. Both clusters are merged and now represented byz1 andz2. For
z5 a path toz2 but not toz1 is found. Nevertheless, this means thatz5 belongs to the cluster
as well. Finally, forz6 no path is found to eitherz1 or z2. Therefore,z6 belongs to another
cluster, which is created in the last step.

The BS-identification algorithm has the following advantages: since each ground-state
configuration represents many ground states, the method does not need to compare all pairs
of states. Each state is compared only with the representing configurations. For the system
sizes usually encountered, this value is only slightly larger than the number of funnels itself.
Thus, the computer time needed for the calculation grows only a little faster thanO(DnC),
wherenC is the number of clusters. Consequently, large sets of ground states, which appear
already for small system sizes, can be treated. Furthermore, the ground-state funnel structure
of even larger systems can be analysed, since it is sufficient that there are only a small number
of ground states per cluster available. One has to ensure that really all clusters are found,
which is simply done by calculating enough states. A study of how many states are needed
for different sizesL is presented in the next section.
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BS(z  , z  )= no6 2

1

3

2

4

5

6
BS(z  , z  )= no6 1

BS(z  , z  )= yes5 2

BS(z  , z  )= no5 1

BS(z  , z  )= yes4 2

BS(z  , z  )= yes4 1

BS(z  , z  )= yes3 2

BS(z  , z  )= no3 1

BS(z  , z  )= no1 2

Figure 3. Example run of the BS cluster-identification algorithm. Six ground states are processed.
For details, see the text.

3. Numerical tests

Since the BS cluster algorithm does not guarantee finding all clusters, numerical tests on
two- and three-dimensional systems were performed. Here, the tests for three dimensions
are presented, because for this type of system results are already available [2]. For two
dimensions the algorithm behaves similarly. Results concerning the number of ground states
and the number of funnels ford = 2 are presented later.

For system sizesL = 3, 4, 5, 6 and 8, large numbers of independent ground states
were calculated using genetic CEA. Usually 1000 different realizations of the disorder were
considered. Table 1 shows the number of realizationsnR and the number of independent runs
r per realization for different system sizesL. For small systems sizes (and for 100 realizations
of L = 5) many runs plus an additional local search were performed to calculate all existing
ground states. For the larger sizesL = 5, 6, 8 the number of ground states is too large, so it is
only possible to try to calculate at least one ground state per cluster. We will see later that for
most of the realizations it is highly probable that all existing clusters were found using genetic
CEA.

But first we concentrate on another issue: the ground states were grouped into clusters
using the BS algorithm. To interpret the following results correctly, one should keep in mind
that for detecting one ground state being part of a cluster it is sufficient to find just one path
to any of the other states of the cluster. The question under consideration now is, how large is
the probability that, for ground states belonging to the same cluster, the BS test finds a path?

To investigate this question the following test was performed. Many thousand times pairs
of ground states were selected, which belong to the same cluster. The probability for selecting
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z z z
z z z

z z z

z z z z z z

1 2

1

1 3 2

1 32 1 2

2 3

3

3

using two iterations:

Figure 4. Example showing that the order in which the states are treated may affect the result.
Consider three statesz1, z2, z3, all belonging to the same cluster. Assume that BS finds a path
between(z1, z2) and(z2, z3), but not between(z1, z3). In the first case two clusters are found
(false), in the second case one cluster (correct). To always obtain the correct result, two iterations
are needed.

Table 1. Three-dimensional±J spin glasses. For each system sizeL: numbernR of realizations,
numberr of independent runs per realization.

L nR r

3 1000 1000
4 1000 104

5 100 105

5 1000 3000
6 1000 5000
8 192 2× 104

a pair was proportional to the size of the cluster. (How to estimate the size of a cluster, if not
all ground states are available, is shown in the next section.) This guarantees that each ground
state contributes to the result with its proper thermodynamical weight. The outcome of this test
depends on the assumption that the construction of the clusters has been performed correctly.
Later we will see that this has indeed been the case with a very high probability. Letpf be the
probability that BS finds a direct path in configuration space connecting two given states. The
result is expected to depend on the number of spins, which are different in both states, i.e. on
the lengthlpath of the path. The result is shown in figure 5 for system sizesL = 3, 4, 5, 6, 8.
The probability decreases with increasing length of the path. Thus, finding a successful path
becomes more difficult, which is to be expected, since the number of possible paths increases
exponentially withlpath. On the other hand, by increasing the system size, it is more likely
to find a connecting path. This is caused by the fact that the number of isolated free spins
increases, which in fact can be flipped in any order. To investigate the dependence onL the
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0 10 20 30 40 50 60
lpath

0.2

0.4

0.6

0.8

1

p f

L=3
L=4
L=5
L=6
L=8

Figure 5. Probabilitypf that BS finds a path of free flipping spins between two ground states
belonging to the same funnel of three-dimensional±J spin glasses.pf is shown as a function of
the numberlpath of spins, which are different in the two states for lattice sizesL = 3, 4, 5, 6, 8.

0 0.5 1 1.5 2
lpath * L

−1.7

0.2

0.4

0.6

0.8

1

p f

L = 4
L = 5
L = 6
L = 8

Figure 6. Finite-size scaling plot ofpf (L, lpath) (see figure 5). A scaling behaviour of
pf (L, lpath) = p̃(L−λlpath) is assumed. Usingλ = 1.7 the data points forL = 4, 5, 6, 8 fall
onto one curve near the originlpath= 0.

following finite-size behaviour is assumed (λ being a scaling exponent):

pf (lpath, L) = p̃f (L−λlpath). (3)

By plotting pf (lpath, L) againstL−λlpath with correct parameterλ the datapoints for
different system sizes nearlpath = 0 should collapse onto a single curve. The best results
were obtained forλ = 1.7. In figure 6 the resulting scaling plot is shown. Now assume that
two ground states differ by a certain fraction of spins. Thus, the absolute number of spins
being different increases withL3. Since the length of a path for a fixed value ofpf increases
only withL1.7, it becomes indeed more and more difficult to find a path with increasing system
sizeL.

So far the behaviour of the BS has been investigated. But what does it mean for the
cluster-identification algorithm? We are interested in the question of whether all clusters are
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Figure 7. By increasing the number of available states per cluster, the probability increases that
they are identified as members of the same cluster. Circles denote states, the thickness of the line
represents the probability that a path is found by the BS.

identified correctly. This can be formulated as a generalized percolation problem.

• Consider
— A setB = {z1, . . . , zK} of objects
— A distance functiond(za, zb)
— A probability pbond(d), that a bond is created between two elements fromB, The
probability depends on the distanced between the elements and decreases monotonically
with d.
• The quantity of interest is the probabilityp1 thatall objects belong to the same cluster,

i.e. the probability that there is only one cluster.

One can identifyB with a set of ground states belonging all to the same cluster,d(za, zb)

with lpath andpbond(d) with the probabilitypf that a path is found. Then the quantityp1 is
the probability that all ground states are identified correctly by the BS clustering algorithm
as being members of the same cluster. Since the average distance between different states
decreases for a given cluster by increasing the numberK of states,p1 should increase withK.
The reason is that more bonds are likely to be created (see figure 7). It should be possible to
determinep1(K) for different functionsd(za, zb) andpbond(d), at least numerically. But here
a different approach is selected. Since all ground states and funnels are available,p1(K) can
be evaluated directly. For each realization, each lattice sizeL and each numberK ∈ [2, 20],
a set ofK different ground states was selected 50 times randomly from one cluster. Again
each ground-state funnel was chosen with a weight proportional to its size. The BS clustering
method was applied and it was verified whether just one cluster was found. The result is shown
if figure 8. As the system size increases, larger clusters occur, which are harder to identify. But
it can be seen that even two ground states are sufficient most of the time to identify a cluster
correctly. To be almost sure, a value ofp1 > 0.999 is expected to be sufficient, which means
thatK = 10 is enough forL = 3 and, as found by further analysis,K = 40 forL = 8.

In fact, for the largest ground-state funnels found in this work there are usually many more
ground states available than needed for identifying a cluster correctly with a probability of
99.9%. Consequently, our results for the probabilitypf andp1 are very reliable. Furthermore,
whenever the number of ground states is too small, it is always possible to generate additional
states by performingT = 0 Monte Carlo simulations, i.e. selecting spins randomly and flipping
them if they are free. Consequently, we can be sure that the funnels, which were used for the
preceding analysis, were obtained correctly.

Another question is, whether for a given realization there are some ground-state funnels,
for which no ground states are found using just a restricted number of runs of genetic CEA. This
problem does not occur for the smallest sizes, because it is possible to calculate all states of
lowest energy using that method. But even forL = 6 there are realizations already exhibiting
more than 106 ground states, making it impossible to obtain all of them directly. The genetic
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0.990

0.995
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Figure 8. Probabilityp1 that a sample ofK ground states belonging to the same cluster is indeed
identified by the BS clustering algorithm as one single cluster as a function ofK for different
system sizesL (d = 3).

CEA method calculates a ground state with a probabilitypC , which increases on average with
the size|C| of the cluster it belongs to [32]. Thus, ground states belonging to small funnels
have a small probabilitypC of being found using a finite number of runs. This probability
is not extremely small, sincepC increases slower than the size of a cluster|C| [32], i.e. for
|C1| < |C2|

pC1

|C1| >
pC2

|C2| (4)

but it is still small enough that some funnels may have been missed. SincepC increases with
|C|, the probability that a cluster isnot found at all takes the largest values for the smallest
clusters, i.e. for a cluster of size 1. This probability is denoted here withp1. Consequently,
p1 is an upper limit for the probability that a certain cluster is missed. Nowp1 is estimated.

Consider a list ofK ground statesz1, . . . , zK (zj = {σ ji }), in the order they were obtained
in the calculation using genetic CEA. Thus, on average, states from larger funnels appear
earlier in the list than states from smaller funnels. A state which is calculated several times is
stored in the list just once. For each state the number of timeshj it has occurred is recorded, let
h ≡∑j hj . For small systems, where the number of existing ground states is small compared
with the number of runs, usuallyhj > 1. Now we look at the smallest clusterCmin, which
was found using the procedure. The relative frequency, that a ground state fromCmin is found,
is approximatelypmin =

∑
j∈Cmin

hj/h. It follows from (4) thatp1 > pmin/|Cmin|. Thus, we
have for the probabilityp1 that a cluster of size 1 is not found duringh different runs

p1 = (1− p1)
h <

(
1− pmin

|Cmin|
)h
. (5)

Consequently, it is possible to estimate for each single configuration the likelihood that
a small cluster may have been missed. For the smaller sizes, where it was claimed that all
ground states were found using a large number of runs, typical valuesp1 < 10−10 were found.
A small cluster was missed withp1 > 0.01 only for three realizations ofL = 3 and never for
L = 4, 5. Thus, it is highly probable that all ground states were found for the smaller sizes
L = 3, 4, 5.
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For larger sizes, the number of states obtained per cluster is small compared with the size
of the cluster. The estimate (5) gives always a large value. Consequently, another method
of estimating the quality of the results has to be applied: the progression of the BS cluster
algorithm is observed during the processing of the ground statesz1, . . . , zK . Each state which
causes a new cluster to be created or some clusters to be merged is called anevent. Since
there is only a finite numbernC of clusters and each cluster is represented by a finite number
of configurations there is only a finite number of events. For the systems sizes encountered
here, the number of events is only slightly larger thannC , because most of the clusters are
represented by just one ground state. In principle, if the last event is known, no further ground
states have to be processed. Since the last event is not known for system sizesL > 5, one can
only assume that the last event has already occurred, if no new event is found for a long time,
while treating more and more stateszj . At each step let

Q(j) ≡ j

number of the last event beforezj
. (6)

The fractionQ measures the relative length of sequences, where no event occurs. For
j beyond the last event,Q(j) → ∞. The longest sequence found before the last event,
Q ≡ maxj6lastQ(j), describes how many states are needed to find all clusters without knowing
the last event.

Using the number of runs of the genetic CEA algorithms given above, a value ofQ larger
than 4 was never observed forL = 3. This means that one can be sure that all funnels have
been identified, if the number of ground states processed is four times larger than the number
of the state constituting the last event. ForL = 4 the largestQ found was 3 and forL = 5
it was observed thatQ < 2.5 for all realizations. For larger sizesQ is not known, soQ(K)
is used instead. Assume that the last event has already occurred, then by including more and
more states into the analysis,Q(K) grows linearly and the confidence increases that really no
further event is to be expected. We believe that if the numberK of ground states is more than
four times the number of the last event inz1, . . . , zK , i.e.Q(K) > 4, one can be quite sure that
all funnels have been found, becauseQ 6 4 for all small sizes. Even ifQ(K) = 2, it seems
very likely that no cluster has been missed, sinceQ seems to decrease by going to larger sizes.
For L = 5, 6 Q(K) < 4 was found for only about 8% of the realizations, andQ(K) < 2
only for 2% (L = 5) respectively 5% (L = 6). Consequently, nearly all clusters have been
identified.Q > 4 holds for 75% of allL = 8 realizations (Q > 2 for 85%), i.e. here a small
number of funnels may have been missed for 25% of all realizations, while for the majority
of the realizations really all funnels have been detected. Only by increasing massively the
number of available ground states per realization, is a substantial improvement for the largest
size treated in this work possible.

On the other hand, if physical properties have to be evaluated, the results are very reliable
even forQ(K) ≈ 2, because each cluster contributes with a weight proportional to its size.
As mentioned before, the probability that genetic CEA returns a certain ground state increases
with cluster size. Consequently, only small clusters are omitted and the result is affected only
slightly.

4. Size of a cluster

Once all clusters are identified their sizes have to be obtained to calculate the entropy. A variant
of BS is used to perform this task. Starting from a state{σi} from a clusterC, free spins are
flipped iteratively, but each spin not more than once. During the iteration additional free spins
may be generated and other spins may become fixed. When there are no more free spins left
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Figure 9. Average sizeV of a cluster as a function of average dynamic numberlmax of free spins
(see the text) for three-dimensional±J spin glasses of system sizesL = 3, 4, 5, where all ground
states have been obtained. AV = 20.9lmax dependence is found, indicated by a line.

the process stops. Thus, one has constructed a straight path in state space from the ground
state to the border of the funnelC. The number of spins that has been flipped is denoted by
l′max. By averaging over several trials and several ground states of a cluster, one obtains an
average valuelmax, which is a measure for the size of the cluster.

For system sizesL = 3, 4, 5 all ground states were available (for 100 realizations for
L = 5) and the cluster sizes are known exactly. Figure 9 displays the average sizeV of a
cluster as a function oflmax. An exponential dependence is found, yielding

V = 2αlmax (7)

with α = 0.90(5). The deviation from the pure exponential behaviour for the largest clusters
of each system size should be a finite-size effect.

One might think that instead of successively turning spins over, one could simply count
the static number of free spins. But it turns out that the quantitylmax describes the size of
a cluster better. The reason is that by flipping spins additional free spins are created and
deleted. Consider, for example, a one-dimensional chain ofN ferromagnetic coupled spins
with antiperiodic boundary conditions. Each ground state consists of two linear domains of
spins. In each domain all spins have the same orientation. For each ground state there are just
two free spins, but all 2N ground states belong to the same cluster. The possibility of similar
ground-state topologies is taken into account using the definition given above.

5. Results

The data presented in the preceding sections show that earlier results [2] for three-dimensional
spin glasses are reliable, where an exponential increase of the degeneracy and the number of
ground-state funnels was found. In this section a similar analysis of the ground-state landscape
of two-dimensional systems is performed. It will be shown that qualitatively the behaviour is
the same as ford = 3.

For system sizesL = 5, 7, 10, 14, 20 large numbers of independent ground states were
calculated using genetic CEA, up to 104 runs per realization were performed. Since many
runs are needed to describe the ground-state landscape as completely as possible, no runs for
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Figure 10. NumbernC of ground-state clusters for two-dimensional±J spin glasses as a function
of system sizeN . The inset shows the same data using a double-logarithmic scale. Lines are guides
to the eye only.

larger systems were conducted, although it is possible to obtain true ground states easily up
to L = 50. Usually 1000 different realizations of the disorder were considered, except for
L = 20, where only 92 realizations could be treated. For the small systems sizesL = 5, 7
many runs plus an additional local search were performed to calculateall ground states. For the
larger sizesL = 10, 14, 20 the number of ground states is too large, so we restrict ourselves to
calculate at least one ground state per cluster. The probability that some clusters were missed
is higher for two dimensions than for thed = 3 case, because the ground-state degeneracy
grows faster with the system size: for small systems sizesL 6 10 it is again highly probable
that all funnels have been obtained. ForL = 14 some small funnels may have been missed for
about 30% of all realizations, while forL = 20 this fraction rises to even 60%. This is due to
the enormous computational effort needed for the largest systems. For theL = 20 realizations
a total computing time of more than 2 CPU years was consumed on a cluster of Power-PC
processors running with 80 MHz.

The ground states were grouped into clusters using the BS algorithm. The number of
states per funnel was sufficiently large, so that only with a probability of less than 10−3 some
configurations from a large cluster may be mistaken for belonging to different funnels. In
figure 10 the average numbernC of clusters is shown as a function of the numberN of spins.
By visualizing the results in a double-logarithmic plot (see inset) one realizes thatnC seems
to grow faster than any power ofN . The larger slope in the linear–logarithmic plot for small
systems may be a finite-size effect. Additionally, forL = 20 there is a large probability that
some small funnels are missed, explaining the smaller slope there. Consequently, the data
presented here favour an exponential increase ofnC(N).

For the small system sizes the number of ground states in each cluster could be counted
directly. For the larger sizes the variant of the BS method was used to estimate the size of each
cluster. The average sizeV of a cluster as a function oflmax is displayed in figure 11. Similar
to the results presented in the preceding section, an exponential dependence is found, yielding
V = 2αlmax with α = 0.85(5).

By summing up all cluster sizes for each realization the ground-state degeneracyD is
obtained. Here we have to be careful when using relation (7). The largest contribution to the
ground-state degeneracy comes from the biggest clusters. Because the path of the spins being
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Figure 11. Average sizeV of a cluster as a function of average dynamic numberlmax of free spins
(see the text) for two-dimensional±J spin glasses of system sizesL = 5, 7, where all ground
states have been obtained. AV = 20.85lmax dependence is found, indicated by a line.
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Figure 12. NumberD of ground states for two-dimensional±J spin glasses as a function of
system sizeN (with α = 0.8). The number of states grows exponentially with the number of spins.
Lines are guides to the eye only. The inset displays the ground-state entropy per spin as a function
ofL. The line shows a fit extrapolatings0 to the infinite system which yieldss0(∞) = 0.078(2)kB .

flipped may span the whole system, finite-size effects occur and the biggest clusters are smaller
than the size given by (7). This is clearly visible in figure 11: please note the logarithmic scale,
i.e. the size of the largest clusters is considerably smaller than 20.85lmax. To take this effect into
account, for estimatingD, a slightly smaller value ofα = 0.8 is used, where the relation
is correct for the largest clusters. The degeneracy averaged over all realizations is shown in
figure 12 as a function ofN . The exponential growth is obvious.

The result for the average ground-state entropy per spin is shown in the inset of figure 12.
By fitting a function of the forms0(L) = s0(∞) + a ∗ L−β a value ofs0(∞) = 0.078(2)kB is
obtained.

The result for the entropy does not suffer from the fact that some ground-state funnels
may have been missed forL = 14, 20: the probability for finding a cluster by applying genetic
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CEA grows with the size of the cluster [32]. This implies that the clusters which may have
been missed are relatively small, so the influence on the result is negligible. The largest source
of uncertainty is caused by the assumption that the size of a cluster grows like 2αlmax. The error
of the constantα enters linearly into the result of the entropy. To estimate the influence of this
approximation,s0 was calculated using estimated cluster sizes as well for the three smallest
systems sizes, where the entropy had been obtained exactly. For both cases the results were
equal to the exact values within error bars. The final result quoted here iss0 = 0.078(5).

In [33] s0 ≈ 0.075kB was estimated by using a recursive method to obtain numerically
exact free energies up toL = 18. The result ofs0 ≈ 0.07kB found in [34] is even slightly
lower. The value found by a Monte Carlo simulations0 ≈ 0.1kB [35] for systems of size 802 is
much larger. The deviation is presumably caused by the fact that it was not possible to obtain
true ground states for systems of that size, i.e. too many states were visited. Recent results are
more accurate: by applying the replica Monte Carlo method [36] a value ofs0 = 0.071(7)was
obtained. A transfer matrix calculation [37] resulted ins0 = 0.0701(5). By using a Pfaffian
methods0 = 0.0704(2) [38] respectivelys0 = 0.0709(4) [39] was obtained. The most recent
values are smaller than the entropy found in this work. The reason may be that larger systems
could be treated (up toL = 256 in [38,39]), while here an extrapolation has been performed
with systems of sizeL 6 20. At least, the values0[L = 22] = 0.079(1) is comparable with
the value ofs0[L = 32] = 0.0780(8) found in [38]. Additionally, the fact that for the other
works the number of antiferromagnetic bonds fluctuates from sample to sample while it is kept
fixed here may have an influence as well. This was tested by calculating ground states for
small systems(L 6 10), where each bond has a probability 0.5 of being (anti-)ferromagnetic.
In this case the entropy turned out to to 5–10% below the values found above. For large system
sizes, which are out of range for the method presented here, this effect should decrease.

The entropy found ford = 2 is considerable higher than for the three-dimensional±J
spin glass, wheres0(∞) = 0.051(1)kB was obtained using the same method applied here [2].

6. Conclusion

The BS method has been presented, which allows the fast identification of very large clusters,
appearing, for example, in the calculation of the ground-state landscape of±J spin glasses.
Furthermore, it is possible to calculate clusters of systems when only a small fraction of all their
states is available. The method should be extendable to similar clustering problems, especially
for analysing results from simulations at finite temperature. A variant of the technique is used
to estimate the size of the clusters.

Since the BS algorithm does not guarantee finding a path in configuration space between
two ground states which belong to the same cluster, extensive numerical tests were performed.
It was shown that by increasing the number of available states, it is possible to reduce the
probability that a cluster is not identified correctly. Additionally, it is possible to estimate the
probability that small clusters are not found. Consequently, the new technique enables us to
analyse the complete funnel structure for two-dimensional±J spin glasses up toL = 20 and
for three-dimensional systems up toL = 8. Thus, systems exhibiting up to 1017 ground states
can be treated efficiently.

For d = 2 an analysis of the ground-state landscape has been presented. The number of
funnels and the ground-state degeneracy increases exponentially with the system size. The
ground-state entropy per spin was found to bes0 = 0.078(5)kB . This is slightly higher than the
values found elsewhere. But it should be stressed that the intention of the method presented here
is to study the cluster structure of the ground states. Consequently, only systems of medium
size can be treated, which does not allow for precise results for the entropy. Nevertheless, the
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result for the entropy does not depend on the way a cluster is defined. The specific definition
given here is only a tool which allows the treatment of systems exhibiting a huge ground-state
degeneracy. Results for three-dimensional systems can be found in [2].
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